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ABSTRACT - A —

A simple approach based on Shoenberg ’s theorem is described
to test whether a set of border points of a simply 4—connected
digital picture is convex. The sequential implementation of this
method is linear in the number of points; the parallel algorithm
needs constant time only, using bitwise parallel Boolean opera-
tions and shifts on binary matrices. Suitable modifications of
this approach can be used for decomposing two—dimensional objects
into convex sets and for filling concavities.
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1. Introduction

In recent years, digital image processing has rapidly grown

into a major discipline with applications in a variety of areas

(5,6]. One important problem in digital image processing is to

test whether a digital object is convex and if not to detect the

concavities. There are a number of approaches to this problem

(1,2,4,7,9,11—15]. Our aim here is to describe a very simple

algorithm to test whether a simply 4-connected digital object S

(i.e., an object without holes) has a border which is convex o~

not. For this purpose we think of S as a set of lattice points

in the Euclidean plane and regard it as a polygon, as in [8],

with the border points of S as its vertices and having edges of

length 1 (between the border points which are horizontally or

vertically adjacent) and /2 (between the border points which are
diagonally adjacent).

The test we use is based upon a very p~ erfu1 theorem due to

Shoenberg [10] which gives necessary and suffic .~nt conditions

for a closed polygon to be convex in an even—dimensional Euclidean

space. In sequential implementation this approach leads to a

border following algorithm which is linear in the number of border

points. In parallel implementation the approach leads to a pat-

tern matching algorithm, i.e. a local operation on binary images,

which runs within constant time using bitwise parallel Boolean

I , • operations and shifts on binary images as basic instructions.
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2. Shoenberg’s Theorem

Let II = 

~O’~~
1’••

~~’~ k 
where P1 = (x. 1, x . 2 , . . . , x~~~

) is a

polygon with vertices P1 (O~ i~k) in rn—dimensional Euclidean

space, Em• We assume that 1 spans Em~ 
which is the case pro-

vided the matrix

X = I l , X i 1, X i 2 , . . . , Xi I I  (1)

(i = O , l,2 , . .•, k , k�zn)

is of rank (m+l).

We say that the polygon 11 is convex on E~ provided it spans

Em and crosses no hyperplane more than in times.

Shoenberg [9] proves that the polygon II is convex on Em if

the matrix X defined by (1) is of rank (m+l) and all its non-

vanishing minors of order (mi-i) are of the same sign.

This theorem is intuitively reasonable, as it says that the

convexity of II on E2 requires that no two triangles PP~P

(a<8<y) have opposite orientations.

The parity of in, however, plays a role. If m is even, and

II is convex in Emi then also the closed polygon (with k+l sides)

= PQP]~ ~~~~~ 
P)c~
PQ

is convex on E
~
. For the case where in is odd it can be shown

that the first and last vector of a convex polygon can aever

coincide. Fortunately , for our application in two dimensions

• this theorem is very useful.

- - -~~~~~ .— •
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For the closed polygon III, it does not matter which vertex

is taken to be the first as long as the correct cyclic order of

the vertices is preserved. This is evident also from the fact

that the cyclic permutations of the rows of the matrix X will

not change the common sign of its minors of the odd order of

(mi-i) . However , for the sequential implementation of our ap-

proach for detecting concavities we start with the border point

which is the first from left to right in the uppermost row of

the simply connected digital object S.
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3. Test for Convexity

The condition of Shoenberg’s theorem is very strong (both

necessary and sufficient) to test for convexity of polygons.

For two—dimensional polygons with (k+l) sides, drawn on a lat-

tice (as in the case of a digital picture), this test takes a

very simple form of evaluating k+l inner products of two three—

component vectors.

Let the border points of S forming a closed polygon with

(k+l) vertices 
~~~~~~~~~~~~~~~~~~ 

be denoted by their position

coordinates in the lattice, thus:

p
0 = (x01y0); P1 (x1,y1);...; P~ = (x.,y

~
);...;Pk 

=

Then according to Shoenberg ’s theorem, It = P 0 .. ~~k~ O is a closed

convex polygon if f the matrix

1 x0 y0

1 x1 y1

x =  (2 )
1 x. y.
i i

± X
k ~k

is of rank 3 and all its non—vanishing minors are of the same

sign.

This test can be carried out as follows:

Let [i x1 1  ~~~~~~~~~~L • = Det ~i x1 y1 (3)

Li x1i-1
IL~

b. 
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(i is taken in cyclic order mod(k+l), O’i’k). Then for each

i = 0 ,1,.. ., k , form the numerical sequence

If all of them are of the same sign, II is convex. Otherwise,

there will be changes of sign (ignor ing zeros ) which indicate

the concavities. A zero value of denotes that the given

three points are collinear (a degenerate triangle).

In Figures 1 and 2 we give an illustration of this procedure.

In our f igures , R denotes an object point, and C a background

point.

However , it is not necessary to perform the inner products

of these three-component vectors, i.e., to compute the

during such a test procedure. There exists only a finite number

of possible pairs of such vectors. All possible combinations

with the corresponding ~~-va1ues are included in the following

schemes : - - -

(and all 900 rotations of these schemes). In the first step

we go from ~ to the center point of such a scheme; in the second

step we go from the center point in a direction which is labeled

I . • with value 5. During both steps the interior of the object S

(of the polygon II) is on our right side. Let the center point

______________________  . . ------ •.—--
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object S polygon II

~~l’~~2’ ~31~~4,~~5, A 0 ) = (—1 ,— i , O ,— l ,—l , — 2 )

The object S (polygon It) is convex.

Figure 1. Example of a convex object.

1~~~~~ -P2.

_ _ _  

1’~~ 1P~~ T4

object S polygon It

= 0 ,—l , 0 , — l ,0 ,— l ,2 ,— l)

The object S (polygon II) is concave; there are two sign

changes in the cyclic order indicating one concavity at

• point P7.

• Figure 2. Example of a concave object.

4 .
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be the border point P1. Then = 5. In particular, all

possible L
~~
-values are taken from the set {—2 —l ,O ,l,2}.

For example in the cases

-r

-p

we have = 1 and ~~~~. = 1.

- 
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4. Sequential Implementation

Let us assume that in one binary image there is exactly

one simply 4-connected object S. At first, starting with the

uppermost row of this image, we search down row by row from left

to right for the first object point P0, which is necessarily a

border point. Then, following the border with the interior on

the right side, we label all border points ~~~~~~~~~~~~ ~~~~~ step

by step with ~~ ‘s according to the sche~ces given in Section 3.

During this procedure we can count the number of sign changes

(if there is any positive t~~-value then the object is concave) ,

or the number of border points, or we can add all positive 
~~~~~~

-

• • + .• values in one register, say R , and all negative ~~ —values in

another register, say R .  At the end of this border following

procedure it is possible to use such results to compute measures

of convexity—-for example

C (s) — 
number of sign changes x 100

1 — number of border points

or
— 

(R +l) xlO O
(R +l)x number of border points

In Figure 3 we give four examples of objects and their measures

C1 and C2. Of course, an object S is convex iff C1(S) = 0.

Let us assume the object S is encoded in Freeman code repre—

sentation (see , e .g. ,  ( 4 ] )  where the directions are encoded

according to the following scheme:

I-

~~~~~~~~~~
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C1(S1) = 0

• C2(S1) = 112.5000
Si 

-

C1(S2) = 0

C2(S2) = 31.2500

S2

Figure 3. Examples for C1 and C2 values .
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C1(S3
) = 33.3333

C2(S3) = 1.7544

S3

C1(S4) = 20

C2(S4) = 20
S4

Figure 3, continued .
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For example, the Freeman code representation for object S4 in

Figure 3 is 0002334765. It is possible to calculate the

sequence for a given object S (and related values, like R+ or

R )  while reading the Freeman code sequence of the object from

left  to right , using the labeling schemes given in Section 3.

For example , for the object S4 we get

00 
~~~~ 

23 -
~~ ~4=~l 47 + L~7=••••l 50 -

~~

00 + 

~2 0 33 -
~ t~5 0 76

02 + t~3= ••••l 
~6

”
~ 

65 ÷ ~9=1

L

I.
,

~~
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5. Parallel Implementation

Let us assume that in one binary image of size NxN there is

exactly one simply 4-connected object S. We choose as a :~‘odel

for parallel computation the PBS (~ara1lel binary image proces-

sing !ystem); the exact definition of this model can be found in 
-

[3]. The PBS can perform bitwise parallel Boolean operations and

shift operations on binary images as basic instructions. For

example, the ~rogram for computing the edge image for the given

object S has the following form:

input binary image X of size NxN with object 5;

begin binary images Y,Z of size NxN;

Y X ~1; Z XAY; y~X4-1; Z ZAY;

Y=X+l; Z=Z/¼Y; y Y+l; Z ZAY;

ZZ; Y XtZ; print Y

end.

In (3] it was explained that the PBS is very time efficient for

computing local operations on binary images; edge detection is

one example of such a local operation. Fortunately, the label-

ing of the border points of S with ~~_values is such a local

operation.

Essentially , the computation of the 
~~
_va1ues can be described

as a special pattern matching procedure. The necessary size of

the patterns is 3x3 only. In Figure 4 we have listed all

patterns which must be matched during this procedure. In this

figure , ~ represents an object point , C~ represents a background

1 -
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and all 90° rotations of these patterns

Figure 4. L~~_patterns .
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point, and K~ can be either , i.e., an object point or a back-

ground point. If a pattern matches a 3x3 window in the binary

image, the center point of this window is labeled with the 
- 

-
1

corresponding 1~~~vaiue . Using binary images in this procedure

only , this labeling can be done in several bit planes, one, for

example , corresponding to label 1, and one to label -1. This

labeling can be done on PBS within constant time. After this

procedure, we can count the l’s in the resulting bit planes

within time O((log N)2) (see [3]) and get the values R~ and R

defined in Section 4, for example.

Let us assume the object S is encoded in Freeman code repre-

sentation already , ~0~~1~ 2•~ 1k Assume that k+l processors are

available for parallel computation. In a first step, each pro-

cessor with number j  (O~jSk) gets the values 
~~1’~~~~~~+1~~ 

as input

and computes In a second step each processor compares its

value with the values of its two neighbor processors. Thus, af ter

two steps we discover whether the object is convex or not. The

values R+ and R , or the number of sign changes, can be computed

using k+l processors within L log2ki steps.

1In using these masks, we assume that the object thickness is

at least two; otherwise, pattern matching with these masks may

result in non—unique labels.

_ T~~~~~~~~~~1 
_ _ _ _ _



“.‘ 
~~~~~ 

- 

1— 
—‘-— 

— 1~
-
~ 

—

~~~~ 

— - Ti

6. Concluding Remarks

a. The approach described for detection of concavities can

be applied to decompose polygons into convex sets.

b. It can also be used to fill concavities by addition or

deletion of edges at the appropriate vertices.

C. An iterative application (relaxation algorithm) of com-

parisons between 1~~—values in the neighborhoods of border points

can be used for smoothing of “small concavities.”

d. After this report was prepared, the authors came across

a recent paper by Bribiesca and Guzman (16] in which a method

based on Freeman Code is given for the description as well as

tinasurement of differences in shapes (shape taxonomy) among poly-

gonal boundaries--a shape being defined as that property of an

object which is invariant under translation, rotation and similar—

ity transformation (choice of grid or lattice size and its orien—

— tation). In order to arrive at a canonical description, the

orientation of the grid is normalized by taking one of its axes

parallel to the length of a basic rectangle which just contains

the boundary ; however, the choice of grid size still plays a role

in uniqueness. For this purpose the following procedure is used:

each lattice point along the boundary is encoded in ternary base,

viz. 0 for Convex, 1 for Straight, and 2 for Concave. This

resulting ternary number is then circular shifted until it assumes

the least value ; this serves as the shape number ; the number of

~

•~~

I :
I’ 
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digits chosen naturally depends on the grid size and hence for

uniqueness the number of digits (called order) is prescribed .

It is clear that the algorithm described in our paper can

be suitably modified if we use 4—connectedness for parallel

automatic generation of such shape numbers.

e. Limitations of this approach: Finally a note of Caution:

in the method described here, we assume that the given object

is digitized and the resulting polygonal boundary is examined

for convexity. It may happen that new concavities are introduced

in digitization (due to orientation and size of mesh) which may

not exist in the original object. For example, the rotation of

a square when digitized will exhibit concavities. This limita-

tion, however, exists in other available methods also (163.

_ _ _ _ _ _ _ _ _ _ _ _ _  
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